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Overview

I Problem sketch

I Communication “stacks”: OSI & Ethernet

I Hardware–hardware synchronization
(data bus protocol)

I Hardware–software synchronization
(Interrupt Service Routine)

I Collocated software–software synchronization
(shared memory)

I Non-collocated software–software synchronization
(message passing)
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Problem 1: hardware schema
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I How to read in sensor information?

I How to write out motor signals?

I How to interact with operator?

I . . .
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Problem 2: software schema
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I How to coordinate the execution of the signal processing and
the motor controller?

I What software to execute when operator pushes a button?

I . . .
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Problem 3: system-to-system schema

I How to get a message from one system to the other?
I What software to execute when a message is received by the

communication hardware?
I . . .

Communication: Principles & Patterns
Herman Bruyninckx

Embedded Motion ControlJune 3, 2015
5

Communication “stacks”: OSI
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Communication “stacks”: Internet

Dozens of protocols, e.g., EtherCat for hard-realtime control.
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HW–HW synchronization
—Data bus protocols—

CPU

analog IO

data bus

RAM

digital IO

I All “rectangles” are electronic registers
I The hardware bus clock triggers

I when they can change value
I when which register can use the bus

⇒ one copy of consistent data at a time
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HW–SW synchronization
—Interrupt Service Routine (ISR)—
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I hardware pre-empts operating system software

⇒ only consistent data copies at all times!
I http://en.wikipedia.org/wiki/Interrupt_handler
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HW–SW synchronization
—Hardware support—

I Turn off interrupts while processing one ISR.

I Test-and-set: to read/write “register word” atomically.
(Available on most CPUs.)

I Compare-and-swap: to switch pointers to buffers atomically.
(Available on more and more CPUs.)

I Direct Memory Access on bus: bus stops CPU to copy data
from one place to another.

(Stalls CPU! Bad for realtime, good for throughput. . . )

Do: Keep ISR short! Don’t: block in ISR!

Communication: Principles & Patterns
Herman Bruyninckx

Embedded Motion ControlJune 3, 2015
10

HW–SW synchronization
—Hardware support—

I Turn off interrupts while processing one ISR.

I Test-and-set: to read/write “register word” atomically.
(Available on most CPUs.)

I Compare-and-swap: to switch pointers to buffers atomically.
(Available on more and more CPUs.)

I Direct Memory Access on bus: bus stops CPU to copy data
from one place to another.

(Stalls CPU! Bad for realtime, good for throughput. . . )

Do: Keep ISR short! Don’t: block in ISR!

Communication: Principles & Patterns
Herman Bruyninckx

Embedded Motion ControlJune 3, 2015
10

Collocated SW–SW synchronization
—Shared memory—

Operating system support for synchronisation:
I Mutex (“mutual exclusion”):

I synchronisation for shared access to data structures in
memory

I mutual exclusion is only indirect, i.e., via code fragments.
I mutex has “owner”, enforcable by OS.

I Semaphore for distinct memory spaces

I Condition variable!!! (see later)

I Spin-lock (only for inside kernel. . . )

I Lock-free data exchange.

See http://people.mech.kuleuven.be/~bruyninc/ecs/

AsynchronousSynchronization.pdf for more details.
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Condition variable

Condition variable has been introduced for two reasons:

1. It allows to make a task sleep until a certain
application-defined logical criterium is satisfied.

2. It allows to make a task sleep within a critical section.
(Unlike a semaphore.)

This is in fact two times the same reason, because the critical
section is needed to evaluate the application-defined logical
criterium atomically.
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Condition variable (2)

CV = combination of:

1. mutex lock

2. boolean expression as logical “wake-up criterium”

3. signal that other tasks can fire to wake up the task blocked
in the condition variable, so that it can re-check its boolean
expression.
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Condition variable (3)

Most important feature of CV: link to logical condition
checking!

The lock allows to check the boolean expression atomically in a
critical section, and to wait for the signal within that critical
section.

It’s the operating system’s responsibility to release the mutex
behind the back of the task, when it goes to sleep in the wait,
and to take it again when the task is woken up by the signal.
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Non-collocated synchronization
—System-to-system message passing—
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Message passing (2)

I Same mechanism as ISR generated by hardware.

I More variety in policies:
I protocols: TCP, UDP, RTP, http, FTP,. . .
I buffering: FIFO, circular, LIFO, lockless,. . .
I synchronisation:

I processes wait for each other
(Concurrent Sequential Processes, “CSP”)

I “high water – low water” buffer overflow coordination

I Quality of Service monitoring: heartbeat, bandwidth
adaptation, message dropping,. . .

I security: https, ssh,. . .
I . . .

⇒ most often handling of message interrupt is split over ISR
(blocking!) and device driver (non-blocking).
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Communication Patterns
—Request–Reply—
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Communication Patterns (2)
—Publish–Subscribe—
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Communication Patterns (3)
—Router–Dealer—
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Communication Patterns (4)

Lots of other protocols needed:

I service discovery

I broker

I tracing/logging

I . . .
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Conclusions

I “communication” is a very mature subject

⇒ use one of the many, many libraries!
For example: ZeroMQ.

⇒ outsource it to specialists. . .

I most important in your system design: which
communication patterns do I need?

⇒ don’t forget about data models, i.e., what has to be
communicated;?

I don’t forget shared memory!
(“blackboard architecture”, “lockfree data exchange”,
“zero-copy communication”,. . . )
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