
Communication: Principles & Patterns

Herman Bruyninckx
Eindhoven University of Technology / KU Leuven

http://people.mech.kuleuven.be/~bruyninc/

Embedded Motion Control
June 3, 2015

Communication: Principles & Patterns
Herman Bruyninckx

Embedded Motion ControlJune 3, 2015
1

Overview

I Problem sketch

I Communication “stacks”: OSI & Ethernet

I Hardware–hardware synchronization
(data bus protocol)

I Hardware–software synchronization
(Interrupt Service Routine)

I Collocated software–software synchronization
(shared memory)

I Non-collocated software–software synchronization
(message passing)

Communication: Principles & Patterns
Herman Bruyninckx

Embedded Motion ControlJune 3, 2015
2

Problem 1: hardware schema

ECS d
is

ta
n

ce
se

n
so

r

motor drive
keyboard

screen

I How to read in sensor information?

I How to write out motor signals?

I How to interact with operator?

I . . .

Communication: Principles & Patterns
Herman Bruyninckx

Embedded Motion ControlJune 3, 2015
3



Problem 2: software schema

CPU

si
g

n
a
l

p
ro

ce
ss

in
g

motion control
user

interface

I How to coordinate the execution of the signal processing and
the motor controller?

I What software to execute when operator pushes a button?

I . . .

Communication: Principles & Patterns
Herman Bruyninckx

Embedded Motion ControlJune 3, 2015
4

Problem 3: system-to-system schema

I How to get a message from one system to the other?
I What software to execute when a message is received by the

communication hardware?
I . . .

Communication: Principles & Patterns
Herman Bruyninckx

Embedded Motion ControlJune 3, 2015
5

Communication “stacks”: OSI

Communication: Principles & Patterns
Herman Bruyninckx

Embedded Motion ControlJune 3, 2015
6



Communication “stacks”: Internet

Dozens of protocols, e.g., EtherCat for hard-realtime control.

Communication: Principles & Patterns
Herman Bruyninckx

Embedded Motion ControlJune 3, 2015
7

HW–HW synchronization
—Data bus protocols—

CPU

analog IO

data bus

RAM

digital IO

I All “rectangles” are electronic registers
I The hardware bus clock triggers

I when they can change value
I when which register can use the bus

⇒ one copy of consistent data at a time

Communication: Principles & Patterns
Herman Bruyninckx

Embedded Motion ControlJune 3, 2015
8

HW–SW synchronization
—Interrupt Service Routine (ISR)—

memory
buffer

hardware
interrupt
service
routine
(ISR)

thread

h
a
rd

w
a
re

re
g

iste
rs

in
te

rru
p

t
g

e
n
e
ra

to
r

p
e
rip

h
e
ra

l h
a
rd

w
a
re

control computer

program
code

2

1

3

I hardware pre-empts operating system software

⇒ only consistent data copies at all times!
I http://en.wikipedia.org/wiki/Interrupt_handler

Communication: Principles & Patterns
Herman Bruyninckx

Embedded Motion ControlJune 3, 2015
9



HW–SW synchronization
—Hardware support—

I Turn off interrupts while processing one ISR.

I Test-and-set: to read/write “register word” atomically.
(Available on most CPUs.)

I Compare-and-swap: to switch pointers to buffers atomically.
(Available on more and more CPUs.)

I Direct Memory Access on bus: bus stops CPU to copy data
from one place to another.

(Stalls CPU! Bad for realtime, good for throughput. . . )

Do: Keep ISR short! Don’t: block in ISR!

Communication: Principles & Patterns
Herman Bruyninckx

Embedded Motion ControlJune 3, 2015
10

HW–SW synchronization
—Hardware support—

I Turn off interrupts while processing one ISR.

I Test-and-set: to read/write “register word” atomically.
(Available on most CPUs.)

I Compare-and-swap: to switch pointers to buffers atomically.
(Available on more and more CPUs.)

I Direct Memory Access on bus: bus stops CPU to copy data
from one place to another.

(Stalls CPU! Bad for realtime, good for throughput. . . )

Do: Keep ISR short! Don’t: block in ISR!

Communication: Principles & Patterns
Herman Bruyninckx

Embedded Motion ControlJune 3, 2015
10

Collocated SW–SW synchronization
—Shared memory—

Operating system support for synchronisation:
I Mutex (“mutual exclusion”):

I synchronisation for shared access to data structures in
memory

I mutual exclusion is only indirect, i.e., via code fragments.
I mutex has “owner”, enforcable by OS.

I Semaphore for distinct memory spaces

I Condition variable!!! (see later)

I Spin-lock (only for inside kernel. . . )

I Lock-free data exchange.

See http://people.mech.kuleuven.be/~bruyninc/ecs/

AsynchronousSynchronization.pdf for more details.

Communication: Principles & Patterns
Herman Bruyninckx

Embedded Motion ControlJune 3, 2015
11



Condition variable

Condition variable has been introduced for two reasons:

1. It allows to make a task sleep until a certain
application-defined logical criterium is satisfied.

2. It allows to make a task sleep within a critical section.
(Unlike a semaphore.)

This is in fact two times the same reason, because the critical
section is needed to evaluate the application-defined logical
criterium atomically.

Communication: Principles & Patterns
Herman Bruyninckx

Embedded Motion ControlJune 3, 2015
12

Condition variable

Condition variable has been introduced for two reasons:

1. It allows to make a task sleep until a certain
application-defined logical criterium is satisfied.

2. It allows to make a task sleep within a critical section.
(Unlike a semaphore.)

This is in fact two times the same reason, because the critical
section is needed to evaluate the application-defined logical
criterium atomically.

Communication: Principles & Patterns
Herman Bruyninckx

Embedded Motion ControlJune 3, 2015
12

Condition variable (2)

CV = combination of:

1. mutex lock

2. boolean expression as logical “wake-up criterium”

3. signal that other tasks can fire to wake up the task blocked
in the condition variable, so that it can re-check its boolean
expression.

Communication: Principles & Patterns
Herman Bruyninckx

Embedded Motion ControlJune 3, 2015
13



Condition variable (3)

Most important feature of CV: link to logical condition
checking!

The lock allows to check the boolean expression atomically in a
critical section, and to wait for the signal within that critical
section.

It’s the operating system’s responsibility to release the mutex
behind the back of the task, when it goes to sleep in the wait,
and to take it again when the task is woken up by the signal.

Communication: Principles & Patterns
Herman Bruyninckx

Embedded Motion ControlJune 3, 2015
14

Non-collocated synchronization
—System-to-system message passing—

memory
buffer

software
interrupt
service
routine
(event

handler)

thread

m
e
m

o
ry

b
u

ff
e
r

so
ftw

a
re

in
te

rru
p

t

o
th

e
r th

re
a
d

control computer

program
code

2

1

3

Communication: Principles & Patterns
Herman Bruyninckx

Embedded Motion ControlJune 3, 2015
15

Message passing (2)

I Same mechanism as ISR generated by hardware.

I More variety in policies:
I protocols: TCP, UDP, RTP, http, FTP,. . .
I buffering: FIFO, circular, LIFO, lockless,. . .
I synchronisation:

I processes wait for each other
(Concurrent Sequential Processes, “CSP”)

I “high water – low water” buffer overflow coordination

I Quality of Service monitoring: heartbeat, bandwidth
adaptation, message dropping,. . .

I security: https, ssh,. . .
I . . .

⇒ most often handling of message interrupt is split over ISR
(blocking!) and device driver (non-blocking).

Communication: Principles & Patterns
Herman Bruyninckx

Embedded Motion ControlJune 3, 2015
16



Communication Patterns
—Request–Reply—

Communication: Principles & Patterns
Herman Bruyninckx

Embedded Motion ControlJune 3, 2015
17

Communication Patterns (2)
—Publish–Subscribe—

Communication: Principles & Patterns
Herman Bruyninckx

Embedded Motion ControlJune 3, 2015
18

Communication Patterns (3)
—Router–Dealer—

Communication: Principles & Patterns
Herman Bruyninckx

Embedded Motion ControlJune 3, 2015
19



Communication Patterns (4)

Lots of other protocols needed:

I service discovery

I broker

I tracing/logging

I . . .

Communication: Principles & Patterns
Herman Bruyninckx

Embedded Motion ControlJune 3, 2015
20

Conclusions

I “communication” is a very mature subject

⇒ use one of the many, many libraries!
For example: ZeroMQ.

⇒ outsource it to specialists. . .

I most important in your system design: which
communication patterns do I need?

⇒ don’t forget about data models, i.e., what has to be
communicated;?

I don’t forget shared memory!
(“blackboard architecture”, “lockfree data exchange”,
“zero-copy communication”,. . . )

Communication: Principles & Patterns
Herman Bruyninckx

Embedded Motion ControlJune 3, 2015
21


