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Structure for behaviour: Task-Skill-Motion
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I many of these “behaviours” run in parallel

⇒ how do you tackle this in your software?
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Structure for roles: Composition Pattern
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I some of these “roles” are hierarchical

⇒ how do you tackle this in your software?
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“Single loop” execution of roles

when triggered % by OS, or other CP
do {

communicate() // get latest events
coordinate() // react to them
configure() // possibly requiring reconfiguration
schedule() // now do one’s Behaviours
coordinate() // execution could trigger new events
communicate() // that others might want to know about
log()

}
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Example code
Online example:
http://people.mech.kuleuven.be/~lin.zhang/ecs-arduino-car

I Arduino processor
→ one single loop (“thread”)
→ asynchronous IO via dedicated HW modules

This course: asynchronous IO “hidden” behind method call
I blocking read/write? what happens behind the screens?

→ stress test, in order to identify platform constraints

I from which latency and jitter does IO become critical
disturbance for control?

→ communicate() becomes sub-system in itself:
I (always tricky) Inter-Process Communication,
I a “process-that-can-wait” architecture,
I (de)multiplexing all IO in one “process message”

Coding with the Composition Pattern
Herman Bruyninckx

Embedded Motion ControlMay 20, 2015
5

Next question to answer: one thread app?

What tasks/behaviours does your app execute:

I sensing?

I world modelling?

I planning?

I control? (discrete & continuous)

Can they all be serialized?

I can your app tolerate that Task-A be delayed by Task-B?

I if so, what is “right” order, inside main “loop”?
what is “right order” inside Task-A?

I if not, how many “processes” do you need?
what are their inter-process communication (IPC) needs?
what IPC mechanisms do you know/need?
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Task-X loop template

when scheduled do { act(); prepare(); }
with

act() {
sense(); // get sensing data out of “process message”
control(); // get continuous part in “process message”
communicate(); // to get control out as fast as possible

}

prepare() {
world-model-update();
plan(); // compute feedforward for next loop
...

if monitor() then {coordinate(); configure();}
}
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Main loop template for multiple tasks
in one single thread

when triggered do {
communicate() // get “process message” and

// deserialize for each Task
coordinate() // react to app-level events
configure() // possibly requiring reconfiguration
schedule-acts() // now do all Tasks’ act()
communicate() // serialize all Tasks’ control

// and get “process message” out!
schedule-prepares() // now do all Tasks’ prepare()
coordinate() // execution could trigger new events
communicate() // “process message” with app events
log()

}
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Summary

I control applications have a lot of structure

⇒ exploit it, for efficiency, readability and composability

I priorities between tasks is often needed

⇒ do it by your own scheduling, not the OS’s!
(because the priorities are often time and context
dependent. . . )

I main gain in control performance comes from separate
scheduling of act() and prepare() of “parallel” behaviours

⇒ impossible with “one-behaviour-in-one-process” design!

I real multi-threaded/multi-processing/multi-node control often
becomes a lot more complex, due to overzealous drive to
keep data consistent over all threads, processes, nodes. . .
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