
Coding with the Composition Pattern

Herman Bruyninckx
Eindhoven University of Technology / KU Leuven

http://people.mech.kuleuven.be/~bruyninc/

Embedded Motion Control
May 20, 2015

Coding with the Composition Pattern
Herman Bruyninckx

Embedded Motion ControlMay 20, 2015
1

Structure for behaviour: Task-Skill-Motion

...

Robot_n
Robot HW

Abstraction
(RHAL)

Task
Monitor

Task
control

feedback

Semantic world
model

Skill_1

Skill_k

Skill_2

Motion
App

Task
control

feedforward

Skill context
(RSAL)

Task contextGUI context

Robot context

developers
users

operators

Environment
context

Robot_1 ...

I many of these “behaviours” run in parallel

⇒ how do you tackle this in your software?

Coding with the Composition Pattern
Herman Bruyninckx

Embedded Motion ControlMay 20, 2015
2

Structure for roles: Composition Pattern

functional
Computation

connection

monitor

Coordinator

connection

Configurator

events

functional
Computation

connection

monitor

Coordinator

connection

Configurator

events

monitor

Coordinator
events

container (context, event, policy, knowledge, deployment,...)

Configurator

Composer Composer

Scheduler
Scheduler

Scheduler

Composer

Logger

Logger

container container

b
ro

a
d

ca
st

m
e
ss

a
g

e

tr
a
n

sa
ct

io
n

connection (data, constraint, objective function, QoS,...)

I some of these “roles” are hierarchical

⇒ how do you tackle this in your software?

Coding with the Composition Pattern
Herman Bruyninckx

Embedded Motion ControlMay 20, 2015
3

“Single loop” execution of roles

when triggered % by OS, or other CP
do {

communicate() // get latest events
coordinate() // react to them
configure() // possibly requiring reconfiguration
schedule() // now do one’s Behaviours
coordinate() // execution could trigger new events
communicate() // that others might want to know about
log()

}

Coding with the Composition Pattern
Herman Bruyninckx

Embedded Motion ControlMay 20, 2015
4

Example code
Online example:
http://people.mech.kuleuven.be/~lin.zhang/ecs-arduino-car

I Arduino processor
→ one single loop (“thread”)
→ asynchronous IO via dedicated HW modules

This course: asynchronous IO “hidden” behind method call
I blocking read/write? what happens behind the screens?

→ stress test, in order to identify platform constraints

I from which latency and jitter does IO become critical
disturbance for control?

→ communicate() becomes sub-system in itself:
I (always tricky) Inter-Process Communication,
I a “process-that-can-wait” architecture,
I (de)multiplexing all IO in one “process message”

Coding with the Composition Pattern
Herman Bruyninckx

Embedded Motion ControlMay 20, 2015
5

Next question to answer: one thread app?

What tasks/behaviours does your app execute:

I sensing?

I world modelling?

I planning?

I control? (discrete & continuous)

Can they all be serialized?

I can your app tolerate that Task-A be delayed by Task-B?

I if so, what is “right” order, inside main “loop”?
what is “right order” inside Task-A?

I if not, how many “processes” do you need?
what are their inter-process communication (IPC) needs?
what IPC mechanisms do you know/need?

Coding with the Composition Pattern
Herman Bruyninckx

Embedded Motion ControlMay 20, 2015
6

Task-X loop template

when scheduled do { act(); prepare(); }
with

act() {
sense(); // get sensing data out of “process message”
control(); // get continuous part in “process message”
communicate(); // to get control out as fast as possible

}

prepare() {
world-model-update();
plan(); // compute feedforward for next loop
...

if monitor() then {coordinate(); configure();}
}

Coding with the Composition Pattern
Herman Bruyninckx

Embedded Motion ControlMay 20, 2015
7

Main loop template for multiple tasks
in one single thread

when triggered do {
communicate() // get “process message” and

// deserialize for each Task
coordinate() // react to app-level events
configure() // possibly requiring reconfiguration
schedule-acts() // now do all Tasks’ act()
communicate() // serialize all Tasks’ control

// and get “process message” out!
schedule-prepares() // now do all Tasks’ prepare()
coordinate() // execution could trigger new events
communicate() // “process message” with app events
log()

}
Coding with the Composition Pattern

Herman Bruyninckx
Embedded Motion ControlMay 20, 2015

8

Summary

I control applications have a lot of structure

⇒ exploit it, for efficiency, readability and composability

I priorities between tasks is often needed

⇒ do it by your own scheduling, not the OS’s!
(because the priorities are often time and context
dependent. . .)

I main gain in control performance comes from separate
scheduling of act() and prepare() of “parallel” behaviours

⇒ impossible with “one-behaviour-in-one-process” design!

I real multi-threaded/multi-processing/multi-node control often
becomes a lot more complex, due to overzealous drive to
keep data consistent over all threads, processes, nodes. . .

Coding with the Composition Pattern
Herman Bruyninckx

Embedded Motion ControlMay 20, 2015
9

