Coding with the Composition Pattern

Herman Bruyninckx
Eindhoven University of Technology / KU Leuven
http://people.mech.kuleuven.be/~bruyninc/

Embedded Motion Control
May 20, 2015

Coding with the Composition Pattern
e Herman Bruyninckx
Embedded Motion ControlMay 20, 2015

Structure for behaviour: Task-Skill-Motion

GUI context Task context
devel Task <
evelopers control (e
users feedback Skill context
operators\ f (RSAL)
\ Skill_1
Motion Task Task
App > control (o 5 1Pl Monito
feedforward Skill_2 tor

I
Enwronmentt j -
context SKill K
»| Semantic world -
model 1 A

Robot context v
Robot HW
<4—) | Abstraction
(RHAL)

Robot_1| === [Robot_n

» many of these “behaviours” run in parallel

= how do you tackle this in your software?

Coding with the Composition Pattern
U e Herman Bruyninckx
Embedded Motion ControlMay 20, 2015

Structure for roles: Composition Pattern

connection (data, constraint, ; ; ; objective function, QoS,...)
f Container zl % g Container
g
3 =
Composer [~ f—— Configurator E E % .=
\\ [<s 5 \\ [L¥ s
functional ; functional i
o 2
(monltor | monitor
|J Scheduler | o)
- |\
([Coortnter e VD (ot | o
(come} = | [o]
Configurator

Coordinator ———
| oorinator |— Scheduter

contalner (context, event, policy, knowledge, deployment,...)

L

» some of these “roles” are hierarchical
= how do you tackle this in your software?

Coding with the Composition Pattern
e Herman Bruyninckx
Embedded Motion ControlMay 20, 2015

“Single loop” execution of roles

when triggered % by OS, or other CP

do {
communicate() // get latest events
coordinate() // react to them
configure() // possibly requiring reconfiguration
schedule() // now do one's Behaviours
coordinate() // execution could trigger new events
communicate() // that others might want to know about
log()

Coding with the Composition Pattern
e Herman Bruyninckx
Embedded Motion ControlMay 20, 2015

Example code

Online example:
http://people.mech.kuleuven.be/~1lin.zhang/ecs-arduino-car
» Arduino processor

— one single loop (“thread”)

— asynchronous 10 via dedicated HW modules

This course: asynchronous |0 “hidden” behind method call
» blocking read /write? what happens behind the screens?
— stress test, in order to identify platform constraints

» from which /atency and jitter does 10 become critical
disturbance for control?
— communicate() becomes sub-system in itself:
» (always tricky) Inter-Process Communication,
» a “process-that-can-wait” architecture,
» (de)multiplexing all 10 in one “process message”

Coding with the Composition Pattern
U e Herman Bruyninckx
Embedded Motion ControlMay 20, 2015

Next question to answer: one thread app?

What tasks/behaviours does your app execute:
» sensing?

> world modelling?

» planning?

v

control? (discrete & continuous)

Can they all be serialized?
» can your app tolerate that Task-A be delayed by Task-B?
» if so, what is “right” order, inside main “loop”?

what is “right order” inside Task-A?

» if not, how many “processes” do you need?
what are their inter-process communication (IPC) needs?
what IPC mechanisms do you know/need?

Coding with the Composition Pattern
e Herman Bruyninckx
Embedded Motion ControlMay 20, 2015

Task-X loop template

when scheduled do { act(); prepare(); }

with
act () {
sense(); // get sensing data out of “process message”
control(); // get continuous part in “process message”

communicate(); // to get control out as fast as possible

}

prepare() {
world-model-update();
plan(); // compute feedforward for next loop

if monitor() then {coordinate(); configure();}

}

Coding with the Composition Pattern
e Herman Bruyninckx 7
Embedded Motion ControlMay 20, 2015

Main loop template for multiple tasks

in one single thread
when triggered do {

communicate () // get "process message” and

// deserialize for each Task
coordinate () // react to app-level events
configure() // possibly requiring reconfiguration
schedule-acts() // now do all Tasks" act ()
communicate() // serialize all Tasks' control

// and get “process message” out!
schedule-prepares() // now do all Tasks' prepare()

coordinate () // execution could trigger new events
communicate () // “process message” with app events
log(O)
T U/ Coding with the Composition Pattern
e Herman Bruyninckx 8
Embedded Motion ControlMay 20, 2015
Summary

» control applications have a lot of structure
= exploit it, for efficiency, readability and composability

» priorities between tasks is often needed
= do it by your own scheduling, not the OS's!
(because the priorities are often time and context
dependent. . .)

» main gain in control performance comes from separate
scheduling of act() and prepare() of “parallel” behaviours
= impossible with “one-behaviour-in-one-process” design!

» real multi-threaded /multi-processing /multi-node control often
becomes a lot more complex, due to overzealous drive to
keep data consistent over all threads, processes, nodes. . .

Coding with the Composition Pattern
e Herman Bruyninckx 9
Embedded Motion ControlMay 20, 2015

