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Overview of this lecture
I design = first modelling, then implementation.

This lecture is about modelling of system of systems.

I systems have “Structure”, “Behaviour” & “Activity”

I model for Structure = Composition Pattern
model for Behaviour = Task-Skill-Motion
model for Activity = Port-based containers

I to develop functionality = to decouple according to “5Cs”:
Computation, Communication, Coordination, Configuration,
Composition

I to develop systems = to couple functionalities:
I map Task-Skill-Motion on Composition Pattern (architecture)
I map Composition Pattern on operating system (deployment)
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Structure, Behaviour & Activity

Behaviour: “reacting to stimuli”

I as seen from the “outside”

I software systems: interact via events and data

I hardware systems: interact mechanically, electrically,. . .

Activity: “executing the code”

I how behaviour is realised “internally”

I software: CPU + RAM + bus

I hardware: mechanical, electrical,. . . , impedance

Structure:

I interconnection of Behaviours and Activities

= system architecture
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Behavioural model: Task-Skill-Motion
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Decouple behaviour: the 5Cs

Configuration

Computation

Communication

Coordination When must components change
their behaviour?

What parameters define the
behaviour of all components?

What functionality is computed?

How are results of computations
being communicated?

C
o
n

n
e
ct

io
n

W
h
e
re

 i
s 

so
m

e
th

in
g
 c

o
m

p
u
te

d
,

a
n
d
 c

o
m

m
u
n
ic

a
te

d
 t

o
/f

ro
m

?

Configuration

Computation

Communication

Coordination event handling,
decision making

parameter setting,
behaviour monitoring

data + algorithms
+ scheduling

data + patterns 
+ protocolsC

o
m

p
o
si

ti
o
n

"c
o
n
ta

in
s"

, 
"c

o
n

n
e
ct

s"

The Composition Pattern for complex robotics systems
Herman Bruyninckx
April 29, 2015

5

Compute behaviour: the 5COPs
(“COP” = constrained optimization problem)

optimization
variables

constraints

tolerances

objective
functions

dist(X,Xmin) ⩽ δ 

g(X,y) ⩽ 0 

minX 

∑i wi fi(X,y)

C
o
n
st

ra
in

e
d

O
p
ti

m
iz

a
ti

o
n

P
ro

b
le

m
FS

M
, 

co
n
fi

g
u
ra

ti
o
n
,

m
o
n
it

o
ri

n
g

, 
e
v
e
n
ts

Advantages of a constrained-based design:

I composable!

I monitorable!

I tolerant!

I configurable!
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Structural model: Composition Pattern
(focus on “roles”, not on “functionalities”!)
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Structural model: Composition Pattern (2)
—Where does “knowledge” fit in?—
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Integration of TSM and CP

I every Task, every RHAL, every World Model is a separate CP.

I every Skill too, but it couples the CPs above, at various levels
of hierarchy:
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⇒ a Skill adds a knowledge context to a composition.

I several Skills can be active at the same time.
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Activity model: port-based interaction

Domain framework
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Dangers of ROS:

I Domain = SW = OS ⇒ component = process = activity!

I Communication = only publish-subscribe via TCP/IP!

I Too “fat” components/nodes ⇒ too heavily coupled 5Cs!

I No dynamics or control ⇒ mechatronics “abstracted away”!
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Single-threaded execution of
Composition Pattern in an Activity

Common (but not absolute!) policy to serialize the execution of
Behaviour in an Activity as follows:

when triggered % by OS, or other CP
do {

communicate() % get latest events
coordinate() % react to them
configure() % possibly requiring reconfiguration
schedule() % now do one’s Behaviour
coordinate() % execution could trigger new events
communicate() % that others might want to know about
log()

}
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Conclusions

I what do all the arrows in (y)our diagrams mean. . . ?

I communication via data messages?
I communication via shared memory?
I knowledge integration via Configuration?
I communication via observation?
I decision making via reasoning?
I . . .

I monitor everything you expect to happen. . .
. . . and be ready to react if it doesn’t!

I skills = monitoring & coordination & configuration
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