
Software for Complex Robotics Systems
—

The Composition Pattern

Herman Bruyninckx
Eindhoven University of Technology

KU Leuven
http://people.mech.kuleuven.be/~bruyninc/

April 29, 2015

The Composition Pattern for complex robotics systems
Herman Bruyninckx
April 29, 2015

1

Overview of this lecture
I design = first modelling, then implementation.

This lecture is about modelling of system of systems.

I systems have “Structure”, “Behaviour” & “Activity”

I model for Structure = Composition Pattern
model for Behaviour = Task-Skill-Motion
model for Activity = Port-based containers

I to develop functionality = to decouple according to “5Cs”:
Computation, Communication, Coordination, Configuration,
Composition

I to develop systems = to couple functionalities:
I map Task-Skill-Motion on Composition Pattern (architecture)
I map Composition Pattern on operating system (deployment)

The Composition Pattern for complex robotics systems
Herman Bruyninckx
April 29, 2015

2

Structure, Behaviour & Activity

Behaviour: “reacting to stimuli”

I as seen from the “outside”

I software systems: interact via events and data

I hardware systems: interact mechanically, electrically,. . .

Activity: “executing the code”

I how behaviour is realised “internally”

I software: CPU + RAM + bus

I hardware: mechanical, electrical,. . . , impedance

Structure:

I interconnection of Behaviours and Activities

= system architecture

The Composition Pattern for complex robotics systems
Herman Bruyninckx
April 29, 2015

3

Behavioural model: Task-Skill-Motion

...

Robot_n
Robot HW

Abstraction
(RHAL)

Task
Monitor

Task
control

feedback

Semantic world
model

Skill_1

Skill_k

Skill_2

Motion
App

Task
control

feedforward

Skill context
(RSAL)

Task contextGUI context

Robot context

developers
users

operators

Environment
context

Robot_1 ...

The Composition Pattern for complex robotics systems
Herman Bruyninckx
April 29, 2015

4

Decouple behaviour: the 5Cs

Configuration

Computation

Communication

Coordination When must components change
their behaviour?

What parameters define the
behaviour of all components?

What functionality is computed?

How are results of computations
being communicated?

C
o
n

n
e
ct

io
n

W
h
e
re

 i
s

so
m

e
th

in
g
 c

o
m

p
u
te

d
,

a
n
d
 c

o
m

m
u
n
ic

a
te

d
 t

o
/f

ro
m

?

Configuration

Computation

Communication

Coordination event handling,
decision making

parameter setting,
behaviour monitoring

data + algorithms
+ scheduling

data + patterns
+ protocolsC

o
m

p
o
si

ti
o
n

"c
o
n
ta

in
s"

,
"c

o
n

n
e
ct

s"

The Composition Pattern for complex robotics systems
Herman Bruyninckx
April 29, 2015

5

Compute behaviour: the 5COPs
(“COP” = constrained optimization problem)

optimization
variables

constraints

tolerances

objective
functions

dist(X,Xmin) ⩽ δ

g(X,y) ⩽ 0

minX

∑i wi fi(X,y)

C
o
n
st

ra
in

e
d

O
p
ti

m
iz

a
ti

o
n

P
ro

b
le

m
FS

M
,

co
n
fi

g
u
ra

ti
o
n
,

m
o
n
it

o
ri

n
g

,
e
v
e
n
ts

Advantages of a constrained-based design:

I composable!

I monitorable!

I tolerant!

I configurable!

The Composition Pattern for complex robotics systems
Herman Bruyninckx
April 29, 2015

6

Structural model: Composition Pattern
(focus on “roles”, not on “functionalities”!)

functional
Computation

connection

monitor

Coordinator

connection

Configurator

events

functional
Computation

connection

monitor

Coordinator

connection

Configurator

events

monitor

Coordinator
events

container (context, event, policy, knowledge, deployment,...)

Configurator

Composer Composer

Scheduler
Scheduler

Scheduler

Composer

Logger

Logger

container container

b
ro

a
d

ca
st

m
e
ss

a
g

e

tr
a
n

sa
ct

io
n

connection (data, constraint, objective function, QoS,...)

The Composition Pattern for complex robotics systems
Herman Bruyninckx
April 29, 2015

7

Structural model: Composition Pattern (2)
—Where does “knowledge” fit in?—

functional
Computation

connection

monitor

Coordinator

connection

Configurator

events

functional
Computation

connection

monitor

Coordinator

connection

Configurator

events

monitor
Configurator

Composer Composer

Scheduler
Scheduler

Composer

Logger

Logger

motion control subsystem

Context_A: device capabilities
and constraints

quality classification subsystem

Context_B: quality inspection
capabilities and constraints

Context_C: system capabilities
and constraints

The Composition Pattern for complex robotics systems
Herman Bruyninckx
April 29, 2015

8

Integration of TSM and CP

I every Task, every RHAL, every World Model is a separate CP.

I every Skill too, but it couples the CPs above, at various levels
of hierarchy:

Capability

Task

Mission

ResourceS
ki

ll

physical capabilities
physical constraints
physical optimums

uses resources to
realise a process
via control

coordinates & configures
capabilities by adding
artificial constraints &
artificial optimums

gives context to Tasks
selects trade-offs &
tolerances in the
production

co
m

p
o
si

ti
o
n
,

e
x
p

lo
it

in
g

 d
o
m

a
in

 k
n
o
w

le
d

g
e

⇒ a Skill adds a knowledge context to a composition.

I several Skills can be active at the same time.

The Composition Pattern for complex robotics systems
Herman Bruyninckx
April 29, 2015

9

Activity model: port-based interaction

Domain framework

SW framework

Operating System

MoveIt, HDF5, Simulink,...
to hide domain complexity

Containers, OSGi, 0MQ,...
middleware components to
hide OS variability

process, virtual memory,
IPC,... for behaviour
containers for deployment
on hardware resources

A
p
p
lic

a
ti

o
n

Yo
u
r

co
m

p
o
si

ti
o
n
;

p
o
ss

ib
ly

a
 f

ra
m

e
w

o
rk

 f
o
r

o
th

e
rs

..
.

HW framework CPU, bus, storage
HW resource components

Dangers of ROS:

I Domain = SW = OS ⇒ component = process = activity!

I Communication = only publish-subscribe via TCP/IP!

I Too “fat” components/nodes ⇒ too heavily coupled 5Cs!

I No dynamics or control ⇒ mechatronics “abstracted away”!

The Composition Pattern for complex robotics systems
Herman Bruyninckx
April 29, 2015

10

Single-threaded execution of
Composition Pattern in an Activity

Common (but not absolute!) policy to serialize the execution of
Behaviour in an Activity as follows:

when triggered % by OS, or other CP
do {

communicate() % get latest events
coordinate() % react to them
configure() % possibly requiring reconfiguration
schedule() % now do one’s Behaviour
coordinate() % execution could trigger new events
communicate() % that others might want to know about
log()

}
The Composition Pattern for complex robotics systems

Herman Bruyninckx
April 29, 2015

11

Conclusions

I what do all the arrows in (y)our diagrams mean. . . ?

I communication via data messages?
I communication via shared memory?
I knowledge integration via Configuration?
I communication via observation?
I decision making via reasoning?
I . . .

I monitor everything you expect to happen. . .
. . . and be ready to react if it doesn’t!

I skills = monitoring & coordination & configuration

The Composition Pattern for complex robotics systems
Herman Bruyninckx
April 29, 2015

12

